Meteorological Characterization

Methods Evaluation

Dave Bush
Don Lehrman, CCM
Robert A. Baxter, CCM
Technical & Business Systems, Inc.

TRA Sustains

Task 1.3

Adequacy and validity of the surface and upperair meteorological measurement variables

- 1. Review and summary of methods
- 2. Mechanical vs. sonic wind measurements
- 3. Spatial representativeness of low wind measurements
- 4. Validity of two-component sodar
- 5. Adequacy of the RASS vertical coverage
- 6. RASS range gate impact on observations
- 7. Usefulness of aircraft temperature soundings
- 8. Temporal adequacy of surface measurements

1. Review and summary of methods

Method

- ⇒ Begin with STI's existing inventory
- Summarize additional sources of data

Results

- ⇒ Work in progress
- ⇒ Summary dependent on results from other subtasks

2. Mechanical vs. sonic wind measurements

Method

- Obtained subset of sonic data
- Processed into 5minute intervals

<u>Results</u>

- ⇒ Little difference between data sets for wind speed and wind direction
- No significant biases, even under low wind speeds

2. Mechanical vs. sonic wind measurements

2. Mechanical vs. sonic wind measurements

3. Spatial representativeness of low wind measurements

Method

Missing 20-meter tower data

Results

⇒ Analysis not performed

Method

- Sodar winds compared with 100-meter tower data
- Only 98-m level available for comparison

<u>Results</u>

- Significant differences, especially for wind speed
- ⇒ Sodar data for trajectory analysis may be limited

Mechanical WS (m/s)	Correlation (r)		Average WS (m/s)		N
	WS	WD	Mechanical	Sodar	
0 – 0.5	0.263	0.775	0.30	0.57	24
0.5 – 1	0.018	0.886	0.77	0.86	56
0 – 1	0.303	0.828	0.61	0.77	80
> 1	0.823	0.960	2.71	2.24	215

5. Adequacy of the RASS vertical coverage

Method

- ⇒ RASS and 100-m tower data merged for three IOPs
- ⇒ Soundings
 categorized into 10
 types based on
 ability to identify
 top of mixing layer

<u>Results</u>

- ⇒ Approximately 1/3
 of soundings
 problematic for
 identifying top of
 mixing layer
- ➡ Inaccuracies in RASS may compound problems

5. Adequacy of the RASS vertical coverage

5. Adequacy of the RASS vertical coverage

6. RASS range gate impact on observations

Method

- ⇒ Compared RASS data with 39 rawinsonde soundings from audits at 11 sites
- Calculated and compared inversion strength (lapse rate) for both methods

<u>Results</u>

- ⇒ Approximately 1/4
 of the inversions
 were not identified
 by RASS

6. RASS range gate impact on observations

6. RASS range gate impact on observations

Sites	Inversions (N)	Average Inversion Strength Audit (°C/100 m)	Average Inversion Strength RASS (°C/100 m)	Average Percent Difference
All	35	1.37	0.41	-67%
Sites with 60 m gate	15	1.44	0.51	-54%
Sites with 105m gate	20	1.31	0.33	-76%

8. Temporal adequacy of surface measurements

Method

- ⇒ Used 5-min and 1hr average wind data
- ⇒ Calculated and compared 1-hr wind run using both sets for December 2000

<u>Results</u>

⇒ Differences between two data sets do not appear significant

8. Temporal adequacy of surface measurements

Scalar WS range (m/s)	N	Average Scalar WS (m/s)	Average Vector WS (m/s)	Average hourly wind run – 5 min averages (km)	Average hourly wind run – 1 hr averages (km)	Diff. (km)
0 – 1	121	0.75	0.58	2.59	2.09	0.50
1 – 1.5	141	1.25	1.07	4.40	3.87	0.53
1.5 – 2	160	1.75	1.61	6.21	5.79	0.42
2 – 2.5	95	2.22	2.01	7.91	7.43	0.48
2.5 – 3	60	2.74	2.65	9.80	9.54	0.26
> 3	76	3.74	3.65	13.37	13.14	0.23
All	653	1.85	1.70	6.56	6.13	0.43

8. Temporal adequacy of surface measurements

7. Usefulness of aircraft temperature soundings

Method

- Compared aircraft soundings with rawinsonde data at Fresno and Bakersfield
- Used Holzworth method for determining mixing heights

Results

- Comparison results remarkably good at Fresno
- ⇒ Less agreement at Bakersfield, possibly due to systematic differences between contractors

7. Usefulness of aircraft temperature soundings

